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Abstract
We discuss the ‘memory effect’ discovered in the 1960s by Kovacs in
temperature shift experiments on glassy polymers, where the volume (or
energy) displays a non-monotonic time behaviour. This effect is generic and is
observed in a variety of different glassy systems (including granular materials).
The aim of this paper is to discuss whether some microscopic information can
be extracted from a quantitative analysis of the ‘Kovacs hump’. We study
analytically two families of theoretical models: domain growth and traps,
for which detailed predictions of the shape of the hump can be obtained.
Qualitatively, the Kovacs effect reflects the heterogeneity of the system: its
description requires dealing not only with averages but with a full probability
distribution (of domain sizes or of relaxation times). We conclude by some
suggestions for a quantitative analysis of experimental results.

PACS number: 75.10.Nr

1. Introduction. The Kovacs effect

Systems with slow or glassy dynamics often exhibit non-trivial behaviour when temperature
changes are applied within the glassy phase. Since the system is out of equilibrium, one
expects that its properties generically depend on the history of the system, an effect that is
often called ‘memory’. However, this general term embraces rather different effects. In the
recent spin-glass literature, memory is associated with a two-time observable, such as the
ac susceptibility (that depends both on the frequency and on the age of the system) or any
other response function. It has been shown that after a negative temperature cycle, the ac
susceptibility recovers the exact value it had before the negative temperature jump, hence
the name memory. This effect would be trivial if the dynamics was totally frozen at low
temperature, whereas experiments show very clearly that some noticeable evolution in fact
takes place [1–3]. The same qualitative effect, although not as clear-cut as in spin-glasses, has
been observed in many other glassy materials (polymers, colloids, ferro-electrics, etc) [4–8].
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Figure 1. Isothermal evolution at T2 = 30 ◦C of the relative variation of the volume (×103) in
polyvinyl acetate: after a direct quench from T0 = 40 ◦C to T2 = 30 ◦C (1); after quenches from
T0 = 40 ◦C to T1 = 10 ◦C (2), 15 ◦C (3) or 25 ◦C (4) followed by rapid re-heating at T2 = 30 ◦C.
Data taken from Kovacs (1963 Adv. Polym. Sci. 3 394).

There is however another well-known ‘memory effect’ that was discovered by Kovacs
40 years ago. This effect concerns one-time observables, such as the specific volume, or
the energy density, etc and clearly shows that the non-equilibrium state of the system cannot
be fully characterized by the (time-dependent) value of thermodynamical variables. The
procedure followed by Kovacs was the following [9]: first, a reference curve is obtained by
quenching the sample from a high temperature T0 to a low temperature T2, and measuring
the time-dependent volume V (t) until a time teq where the system can be considered to be
in equilibrium. This defines a volume Veq(T2) = V (teq). In a second step, the sample is
quenched again from T0 to a temperature T1 < T2, until a certain time t1. The temperature
is then quickly raised from T1 to T2. The time t1 is chosen such that the volume just after
the jump reaches the value V

(
t+
1

) = Veq(T2)—whereas in equilibrium (t1 → ∞) one would
have Veq(T1) < Veq(T2). Naively, one expects that nothing should happen, since the volume
is already at its ‘correct’ equilibrium value Veq(T2) at the new temperature. The volume V (t)

in fact shows a non-monotonic behaviour for t > t1, first increasing and then relaxing back to
the equilibrium value Veq(T2):

V (t) = Veq(T2) + �V (t) (1)

where �V � 0 is the ‘Kovacs hump’, such that �V
(
t = t+

1

) = 0 and �V (t → ∞) = 0. Note
that the condition V

(
t+
1

) = Veq(T2) (and not V (t−1 ) = Veq(T2)) is chosen so as to remove the
trivial part of the effect, due to the thermal expansion of the fast (local) degrees of freedom.
This subtlety in the Kovacs protocol is in fact quite important, as will be made clear below.

Figure 1 reproduces the original results published by Kovacs in 1963 [9], obtained on
polyvinyl acetate. The Kovacs effect shows unambiguously that other ‘internal’ variables,
besides the volume, are needed to characterize the out of equilibrium state of the system,
and that these variables did not reach their T2 equilibrium value at the end of the first stage.
The memory in this case refers to the fact that these internal variables keep track, to some
extent, of the system history. To avoid confusion between the different types of memory
effects, we will follow [10] and call the above phenomenon the Kovacs effect. The Kovacs
hump is characterized by its height �VK , and by the time τK for which the maximum is
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reached: �V (t = t1 + τK) = �VK . Qualitatively, the height �VK grows with the temperature
difference T2 − T1 (it should obviously be zero for T1 = T2), whereas the time τK decreases
when T2 − T1 increases.

A similar effect was recently reported in the context of granular materials [11]. In the first
stage of another type of experiment, one ‘taps’ the system with three different amplitudes—say
weak, moderate and strong—during a time chosen such as to reach a certain density, identical
in the three cases. In the second stage of the experiment, the tapping amplitude is chosen
to be moderate. The density just after the amplitude ‘jump’ is recorded. If the state of the
system was only described by its density, the evolution of the density after the jump should
be identical for all three situations, and follow the ‘moderate’ reference curve. This is not the
case: as for the polymer glass, the weakly tapped system first has to dilate before it is able to
resume its compaction, whereas the strongly tapped system compacts faster than the reference
system just after the jump [11].

Finally, the same effect was recently observed in a numerical simulation of three-
dimensional spin-glasses [12] and in a realistic model of molecular liquid4 [13]. In spin-
glasses, the energy density reveals the characteristic Kovacs hump when the temperature is
raised; the height of the hump and the time of the maximum behave qualitatively as in polymer
glasses. Features similar to the Kovacs effect have also been identified experimentally in
dipolar glasses [14] and spin-glasses [15]. Since the Kovacs effect seems to be rather
ubiquitous, a natural question is whether the underlying physics is the same in all these
systems. Stated differently, can the effect select between different microscopic models of
glassy dynamics?

The aim of this somewhat didactic paper is to discuss some simple models that allow
us to shed light on the above questions. In these models, the ‘internal’ variables referred to
above appear as a whole distribution function (of domain sizes, or of relaxation times) of which
only the mean is fixed by the experimental protocol, whereas the shape of the distribution keeps
track of the system history. We show that the Kovacs effect is indeed rather generic, but that
the detailed shape of the ‘Kovacs hump’ could reveal some useful microscopic information on
the underlying glassy dynamics (see also the discussion in [16]). We first discuss models
where slow dynamics is due to a coarsening mechanism, and recall and generalize the
main results of [10]. We then turn to the Kovacs effect in the trap model, where detailed
calculations can be performed. We end the paper with some suggestions for further analysing
experimental results, with the hope that the Kovacs effect could help in identifying distributions
of relaxation times, and/or provide some indirect evidence for a growing length scale in glassy
systems.

2. The Kovacs effect and domain growth

The simplest out of equilibrium system is the one-dimensional Ising model with Glauber
dynamics. This system does not order at any non-zero temperature, but at sufficiently low
temperatures the equilibrium domain size ξ becomes large and, for times shorter than the
equilibration time, the dynamics is governed by the growth of the typical domain size as the
square root of time. The energy, which is simply related to the average density of domain
walls, plays in this model the role of the volume in Kovacs’ experiments. When the system
is prepared at T1 for a time t1 such that the average distance between the walls is equal to
the equilibrium size at T2 > T1, the out of equilibrium distribution of domain sizes at T1

4 The authors of [13] show that, although the volume is the same at the beginning and at the end of the thermal
history, the visited configurations in the energy landscape are very different.
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Figure 2. Distribution of domain sizes in the one-dimensional Ising model corresponding to
two different temperatures, such that the average domain size is identical in the two cases (from
[17]). The out of equilibrium distribution T1 < T2 (dotted line) is more sharply peaked than the
corresponding equilibrium distribution at T2 (solid line). Upon heating, small domains, initially
less numerous, quickly appear within large ones.

is more sharply peaked around its mean than the corresponding equilibrium distribution at
T2—see figure 2. In particular, the number of small domains is depleted from its equilibrium
value. Upon heating, the first effect is that some extra domain walls nucleate within the larger
domains, causing the number of small domains (and the energy) to increase. The exact shape
of Kovacs’ hump can be computed in this model [17], and is found to be linear in time for small
times, with a slope that increases with the temperature difference T2 − T1, before reaching
the (exponential) relaxation curve describing a simple quench from high temperatures. Note
that the relaxation time is finite for all T > 0 in this model; the rate of the final decay only
depends on T2, but not on T1. As discussed by Brawer [17], this is qualitatively similar to the
experimental curves reported in figure 1.

In systems where the equilibrium domain size is infinite, or very large compared to the
dynamical length corresponding to the experimental time scale5, the mechanism for the Kovacs
effect in coarsening systems is more generally the following [10, 12]: after a time t1 spent at
T1, the system orders up to a scale �1 = �(t1, T1), leading to an excess energy (over the bulk
contribution) due to the presence of domain walls with typical scale �1. This excess energy
density behaves as ��−d

1 , where � is the exponent giving the scaling of the excess energy of
a domain with its size (for example, � = d − 1 for the Ising model, and � = d − 2 in the
XY-model). When the temperature is increased to T2, the bulk energy density (within the
domains) is suddenly too low compared to the equilibrium value at T2. This bulk contribution
to the energy density therefore increases rapidly by nucleating new domain walls within the
large pre-existing domains of size �1. This picture was actually suggested in [14] to interpret
an ‘overshoot’ effect in dipolar glasses which, with hindsight, is the precise counterpart of the
Kovacs effect in these materials.

5 If the equilibrium correlation length is small, then the Kovacs effect is trivial in the sense that only fast degrees of
freedom need to reequilibrate. Only if the maximum of the Kovacs hump occurs at times much larger than the atomic
time scales will one observe a non-trivial effect when following the Kovacs protocol, where the contribution of fast
degrees of freedom is removed by choosing E(t+

1 ) = Eeq(T2) (see the discussion in the introduction).
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For larger times, the primary coarsening process resumes and the density of domain walls
decreases, leading to a decrease of the total energy density. This decay is a priori expected to
dominate when the length scale �(t, T2) associated with the dynamical processes initiated by
the temperature change becomes of the order of �1, i.e. after a time τ ∗ such that

�(τ ∗, T2) = �1. (2)

However, the time τK at which the maximum of the Kovacs hump occurs turns out to be, in
general, much smaller than τ ∗ (but still much larger than the microscopic time scale τ0). More
precisely, the following picture emerges from the exact computation of [10]:

• In the limit where �(t, T2) and �1 are much larger than the lattice spacing a, the fast initial
nucleation processes have taken place, and one can expect the energy density E to take
the following scaling form:

�E = E(t1 + t) − Eeq(T2) = �EKF
(

�(t, T2)

�1

)
�(t, T2) � a (3)

where �EK is the height of the Kovacs’ hump, and F(u) ∼ u�−d when u → ∞. Using
the fact that �E should not depend on t1 at large times, one finds �EK ∼ ��−d

1 , which
means that the energy scale of the hump is of the order of the excess energy stored in the
domain walls at T1. As shown in [10], the above scaling form indeed holds exactly for
the 2D XY model in the ordered critical phase, for which � = d − 2. One finds in that
case FXY (u) = (1 + u2)−1.

• In the short time limit �(t, T2) ∼ a, one expects a nucleation contribution to �E

responsible for the Kovacs hump. In the case of the critical XY model, where the
thermal correlation length ξ is infinite, one finds a power-law contribution [10]:

�E ≈ �EK

[
1 −

(
�(t, T2)

a

)�−d
]

. (4)

Note that this contribution vanishes for t = 0, since �(t = 0, T2) = a, but cannot be
written as a scaling function of �/�1. This is at the origin of the difference between τK

and τ ∗. The above results only hold if �1 � ξ . In the other limit where the correlation
length ξ is small, the above power law is replaced by a fast exponential convergence. In
this case τK ∼ τ0, and the Kovacs effect becomes trivial (it would actually disappear if
the Kovacs protocol was used—see footnote 5).

In this domain growth scenario, one finds that the length scale �1 (and therefore τ ∗) is
a decreasing function of T2 − T1. Physically, this is because the bulk energy contribution is
lower for smaller T1; the residual domain wall energy density

(∼��−d
1

)
must then be larger in

order to ensure that in the Kovacs protocol, the time t1 is determined such that

E(t1, T1) = Eeq(T1) + ��−d
1 = Eeq(T2). (5)

For small T2 − T1, one thus expects a linear relation �EK ∼ ��−d
1 ∝ C(T2 − T1), where C

is the specific heat. Therefore, the qualitative dependence of both τ ∗ and �EK ∼ ��−d
1 with

T2 − T1 is correctly predicted by this picture.
If the length �(t, T ) grows as a power of time, then from equation (3), �E/�EK is found

to be a scaling function of t/τ ∗ in the limit of large times, where the initial (non-scaling)
contribution due to nucleation vanishes. Due to this non-scaling contribution, the scaling
function F has a non-zero value for small arguments: F(0+) > 0. Therefore, in the domain
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growth scenario (including the equilibrium case discussed by Brawer and recalled above), the
Kovacs hump does not rescale as a function of t/τK , because the position of the maximum τK

is determined by the non-scaling nucleation contribution. The time should rather be rescaled
by τ ∗ determined such that the amplitude of the hump has decreased by a factor two (say). By
the same token, one expects to see systematic deviations from scaling in the regime t � τ ∗,
due to the non-scaling contribution of nucleation processes.

We now turn to another soluble model that, interestingly, predicts a variety of shapes for
the Kovacs hump, which in some regimes are very similar to the ones predicted by the domain
growth model.

3. The Kovacs effect in the trap model

3.1. Definition of the model

A simple model exhibiting glassy behaviour is the trap model, which has been extensively
studied in the literature [18–20], and generalized to describe the rheology of soft glassy
materials [21], or the dynamics of contacts in granular media [22]. In this model, a particle is
trapped in potential wells, and can escape only through thermal activation. The depth (energy
barrier) of the well is a random variable E > 0 with an exponential a priori distribution
ρ(E) = T −1

g e−E/Tg . When the particle is in a trap j of energy Ej , it will escape after a

time �t distributed according to pj (�t) = τ−1
j e−�t/τj , where τj = τ0 eEj /T is the mean

trapping time of the site j , and then chooses a new trap among all the others with a uniform
probability. The microscopic time scale τ0 is taken as the time unit in the following. The
energy scale Tg turns out to also be the phase transition temperature. For T > Tg , the system
equilibrates and behaves like a ‘liquid’, whereas for T < Tg , the lowest energy states become
the most probable ones, and the system never stops ageing. Of course, this model should not
be considered as a realistic microscopic model, but rather as a coarse-grained phase-space
model—see the discussion in [23, 24]. Also, an exponential distribution of energies might
not be the most appropriate description of a given system. For example, recent simulations of
Lennard-Jones systems [25] have shown that a Gaussian distribution of barriers is in fact more
adequate. As noted in [20], the results of the exponential trap model can be extended to that
case.

Due to its simplicity, this model allows one to obtain analytic expressions of many
quantities of interest. As for coarsening models, we have chosen the energy as the natural
observable that plays the role of the volume in Kovacs’ experiments.

Let us now present the explicit calculation of the energy as a function of time, with the
temperature protocol defined in the introduction. However, since fast degrees of freedom
are absent in the trap model (there is no ‘bottom of the wells’ dynamics), one does not need
to distinguish between t−1 and t+

1 , as is important both experimentally and in models with
microscopic degrees of freedom (see above for a discussion of this point). Two different cases
have been considered in detail. In the first one, the temperatures T1 and T2 are both above Tg ,
but close to it, so that the system eventually equilibrates, but with very long relaxation times.
In the second case, both temperatures are below Tg , so that the system is in the ageing regime
where equilibration is never achieved. Finally, we only briefly discuss the ‘mixed’ case where
T1 < Tg < T2. The original Kovacs experiment corresponds to the first case, since the volume
is seen to relax towards its equilibrium value at T2, used as the reference energy. In the second
case, the time t1 at which temperature is shifted is in fact arbitrary, but interesting scaling
properties appear.



The Kovacs effect in model glasses 10707

3.2. Case T > Tg: relaxation towards equilibrium

We shall use a continuous energy description (see [20]), i.e. the system is described by the
probability PT(E, t) of being in a state with an energy (barrier) E at time t and temperature T,
which evolves according to the following master equation:

∂PT

∂t
(E, t) = −e−E/T PT(E, t) + ω(t)ρ(E) (6)

where ω(t) = ∫ ∞
0 dE′ e−E′/T PT(E′, t) is the average hopping rate. For T > Tg, PT(E, t)

relaxes towards the equilibrium distribution P
eq
T (E) = Z−1 eE/T . So the interesting

quantity to study is the deviation from equilibrium, i.e. the distribution pT(E, t) defined
as pT(E, t) = PT(E, t) − P

eq
T (E). Let us first focus on a simple isothermal quench from a

given initial condition P0(E) = P
eq
T0

(E). The evolution of pT(E, t) can be computed using a
time Laplace transform, and if T0 > T , the asymptotic behaviour of the distribution becomes
independent of the initial condition P0(E), yielding

p̂(E, s) = (βg − β) e−(βg−β)E

1 + s eβE
[
(θ)
(2 − θ)sθ−2 − eβE] (7)

where β = 1/T and θ = T/Tg is the reduced temperature. Let us define the energy deviation
εT(t) = ∣∣ET(t)−E

eq
T

∣∣. Note that in the following, energies are understood to be true physical
energies, i.e. the opposite of the energy barriers: εT(t) = − ∫ ∞

0 dEEpT(E, t). This last
quantity can be computed from p̂(E, s), which gives

εT(t) = T

tθ−1
[
(θ) ln t − 
′(θ)]. (8)

Hence, the energy relaxation above Tg is (up to a logarithmic correction) a power law with
an exponent that becomes small for T → Tg . The time t1 when the temperature has to be
raised from T1 to T2 in the Kovacs procedure is defined by ET1(t1) = E

eq
T2

, or equivalently
εT1(t0) = E

eq
T2

− E
eq
T1

. Thus t1 is determined by the equation:

1

t
θ1−1
1

[
(θ1) ln t1 − 
′(θ1)] ≈ θ2 − θ1

(θ1 − 1)2
. (9)

Note that in order to be consistent, the above equation assumes that θ2 − θ1 � (θ1 − 1)2 � 1,
in which case t1 � τ0(=1).

Now using the distribution pT2(E, t0) = pT1(E, t0) + P
eq
T1

(E) − P
eq
T2

(E) as the initial
condition in the master equation, one can compute the further evolution of the energy at T2 at
time t1 + t . A time scale τ ∗ = t

γ

1 naturally appears (with γ = θ1/θ2). Defining the energy
variation �E(t) = E(t1 + t) − E(t1), one finds in the short-time regime 1 � t � τ ∗:

�E(t) ≈ T1

t
θ1−1
1

[
ln t1 +

1

θ1 − 1

]
−

(
1 +

1

t
θ1−1
1

)
T2

t θ2−1/γ
[ln t + γE] +

T2

t θ2−1
[ln t + γE] (10)

where γE = −
′(1) is the Euler constant. Interestingly, this behaviour is very similar to that
found for the coarsening process. Indeed, in the limit θ2 − θ1 � (θ1 −1)2, the two power laws
in the previous equation, θ2 − 1/γ and θ2 − 1, are very close to each other, and the expression
can be simplified as

�E(t) ≈ T1

t
θ1−1
1

([
ln t1 +

1

θ1 − 1

]
− 1

t θ2−1
[ln t + γE]

)
. (11)

Therefore, the maximum of the Kovacs hump is given (in the considered limit) by

�EK ≈ T1

t
θ1−1
1

ln t1 ≈ θ2 − θ1

(θ1 − 1)2
. (12)
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The approach to this maximum is described by a power law of time with a logarithmic
correction. This is not very different from the coarsening model discussed in the previous
section. Note that the height of the hump is again linear in T2 − T1 for small temperature
differences, as was the case for domain growth. Note also that τ ∗ = t

γ

1 is a decreasing function
of T2 − T1, in agreement with experimental results.

In the long time regime t � τ ∗, one recovers as expected the isothermal quench result
equation (8) at temperature T2

�E(t) = T2

t θ2−1
[
(θ2) ln t − 
′(θ2)]. (13)

This late time result can again be put in a scaling form (up to logarithmic corrections)

�E(t) = �EKG
(

t

τ ∗

)
τ ∗ = t

γ

1 (14)

but the early time regime equation (11) fails to scale. Only when T1, T2 → Tg , does one find
that the maximum time τK coincides with τ ∗. More generally, and as for domain growth, one
has τK � τ ∗.

3.3. The ageing case (T1, T2 < Tg)

We now turn to the ageing case where the shape of the hump is found to be qualitatively
different. We consider the case where both T1 and T2 are less than Tg . In this case, the system
never converges to an equilibrium state, but keeps on ageing, so that the situation is different
from that of the Kovacs original experiment, but could in principle also be investigated
experimentally. Since the equilibrium energy at T2 does not exist, we choose to shift the
temperature from T1 (initially reached at t = 0) to T2 after a waiting time tw (which plays the
role of t1 in the previous sections).

3.3.1. Probability distribution and Green function. The continuous energy master
equation (6) no longer admits a stationary solution. The resulting dynamical distribution
can be computed using the Laplace transform P̂ T(E, sw) (in the time domain) of PT(E, tw),
where tw is the waiting time since the quench from high temperatures. One finds, in the
asymptotic regime sw → 0 (or tw → ∞):

P̂ T(E, sw) � �̂T(E, s) ≡ sin πθ

π

β eβE

(1 + s eβE)(s eβE)θ
(15)

where θ ≡ T/Tg . Since s�̂T(E, s) is a function of the product s eβE , �T(E, t) depends
only on the scaling variable ξ = eβE/t . Then one can turn to the computation of the energy
variation after the temperature shift.

3.3.2. Computation of the energy variation. The detailed calculation of the energy variation
�E(tw, t) between time tw (when temperature is shifted from T1 to T2) and tw + t is given in
the appendix. Here we shall only summarize the main steps of the calculation, and emphasize
physical interpretations and conclusions. From a technical point of view, a useful tool in order
to compute �E(tw, t) is the Green function GT(E,E0, t) defined as the probability to have
the energy E at time tw + t given that the energy was E0 at time tw. This Green function is
computed, as for PT(E, tw), using the Laplace transform, with s the Laplace variable. One
finds, for sτ0 � 1 (t � τ0), the following asymptotic expression:

ĜT(E,E0, s) = eβE0

1 + s eβE0
δ(E − E0) +

1

1 + s eβE0
�̂T(E, s). (16)
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Thanks to the Markovian properties of the dynamics, the Green function does not depend on
tw, but only on the time difference t. One can express the average energy Ē(tw + t) at time
tw + t using the Green function:

Ē(tw + t) = −
∫ ∞

0
dE

∫ ∞

0
dE0 EGT1(E,E0, t)PT2(E0, tw) (17)

where the minus sign accounts for the fact that the variable E (i.e. the energy barrier) is actually
the opposite of the true energy. The energy variation �E(tw, t) is then

�E(tw, t) ≡ Ē(tw + t) − Ē(tw) (18)

= −
∫ ∞

0
dE

∫ ∞

0
dE0(E − E0)GT1(E,E0, t)PT2(E0, tw). (19)

After a few calculations (see the appendix), one can show that �E(tw, t) exhibits a kind of
‘sub-ageing’ scaling (see also [26]):

�E(tw, t) = ψ

(
t

t
γ
w

)
(20)

where γ = T1/T2 < 1. One sees that the energy evolves on a typical time scale given by
τK = τ ∗ = t

γ
w , which is expected from a simple activation argument. One can also study the

asymptotic (short time and late time) behaviour of this scaling function. Concerning the short
time behaviour, it is necessary to distinguish between two cases.

• If γ > 1 − θ1 (small temperature shifts) then �E(tw, t) is found to be singular at short
times:

�E(tw, t) � K>

(
t

t
γ
w

)(1−θ1)/γ

t � tγw (21)

• If on the contrary γ < 1 − θ1, one finds a linear t dependence in the short time regime
(with logarithmic corrections):

�E(tw, t) � K<

(
ln

t
γ
w

t
+ C

)
t

t
γ
w

t � tγw. (22)

The coefficients K>,K< and C appearing in equations (21), (22) are given in the appendix—
see equations (64), (70), (71)—and are found to be positive for θ1 < θ2. Therefore �E(tw, t)

is positive for short times, and the Kovacs effect has the expected sign.
Note also that the coefficient K> vanishes linearly when θ1 → θ2. This is expected: if no

temperature jump occurs, the energy variation should be regular, i.e. linear in t. Moreover, if
θ1 > θ2 (negative temperature shift, γ > 1), the above calculation is still valid, with a negative
K>, and a non-trivial exponent (1 − θ1)/γ . The Kovacs hump becomes in this case a Kovacs
trough. Monte Carlo data are compared with these analytical predictions in figures 3 and 4,
showing a rather good agreement. Note that the scaling equation (20) is only approximate for
finite tw. A better rescaling can be obtained in the case θ1 < θ2 by plotting �E(t, tw)/�EK as
a function of t/τK , where �EK is the maximum value of �E(tw, t), reached at t = τK � t

γ
w .

Equation (20) means that asymptotically, �EK becomes independent of tw.
Finally, the long time behaviour is easy to analyse: one can show that PT(E, tw + t)

behaves asymptotically in the same way whatever the initial condition PT(E, tw). The system
behaves, at late time, as if it had been quenched directly from high temperature (see figure 5).
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Figure 3. Plot of �E(tw, t) in the trap model as a function of the scaling variable t/t
γ
w for

tw = 105, 106, 107 and 108 (Monte Carlo data), θ1 = 0.5 and θ2 = 0.6. Inset: comparison
between Monte Carlo data (tw = 108) and the analytical prediction of the short time behaviour—
see equation (21)—for the same temperatures as above.
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Figure 4. Plot of �E(tw, t) in the trap model as a function of the scaling variable t/t
γ
w for

tw = 106 (Monte Carlo data), in the case of a negative temperature shift: θ1 = 0.6 and θ2 = 0.5.
Inset: comparison between Monte Carlo data and the analytical prediction of the short time
behaviour—see equation (21); note that finite size effects are strong in this case.

This means that in this limit Ē(tw + t) does not depend on tw, but only on t:

Ē(tw + t) � Ēlate(t) ≡ T2[
′(1) − π cot πθ2] − T2 ln t t � tγw (23)

where Ēlate(t) is the average energy at a (large) time t after a quench from a high temperature.
So �E(tw, t) is simply given by

�E(tw, t) = Ēlate(t) − Ē(tw) t � tγw (24)



The Kovacs effect in model glasses 10711

10
2

10
3

10
4

10
5

10
6

10
7

 t

-8

-7

-6

-5

-4

-3

 E
(t

w
+t

)

θ
1
 = 0.3, θ

2
 = 0.5, t

w
 = 10

7

θ
1
 = 0.4, θ

2
 = 0.5, t

w
 = 10

6

Quench to θ
2
 = 0.5

Asymptotic prediction
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model as a function of t, for temperatures θ1 = 0.3 and 0.4, θ2 = 0.5 and waiting times tw = 107

and 106, respectively (dot-dash) with a direct quench from infinite temperature to θ2 = 0.5 (tw = 0,
full line). The asymptotic analytical prediction is also shown (dashed line).

3.4. The mixed case (T1 < Tg < T2)

For completeness, and since this is also an interesting situation, we briefly mention the results
obtained in the trap model in the case where the glass transition temperature Tg lies between
T1 and T2: T1 < Tg < T2. This case is worth studying, since the system can eventually
equilibrate at the final temperature T2, with long relaxation times (assuming T2 is close to
Tg), but T1 can be varied in the whole range 0 < T1 < Tg and not only in the vicinity of Tg .
Interestingly, one finds the same short time singularities as in the ageing case (T1 < T2 < Tg)

studied above:

�E(t1, t) ∼
(

t

t
γ

1

)(1−θ1)/γ

1 − θ1 < γ (25)

�E(t1, t) ∼ t

t
γ

1

1 − θ1 > γ (26)

with however prefactors and logarithmic corrections which are different from that found in
the ageing case. In the long time regime, one naturally finds a convergence of �E(t, t1)

proportional to t−(θ2−1), as in the case Tg < T1 < T2. As a result, one sees as could have been
expected that the short time regime is generically dominated by the thermal history before the
temperature shift, whereas the long time behaviour depends only on the final temperature T2.

3.5. Discussion—‘fronts’ in the energy distribution

It is interesting to discuss how the distribution of energies P(E, t) evolves when the
temperature is shifted from T1 to T2 > T1. This is illustrated in figure 6: at the lowest
temperature, the probability of small (negative) energies is depressed. When the temperature
is raised, the system obviously re-equilibrates fastest in the region of small energies since
this corresponds to the smallest relaxation times. The probability ‘hole’ is thus rapidly
filled, leading to an increase of the average energy, and thus to the Kovacs effect. As time
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Figure 6. Dynamical energy distribution P(E, tw, tw + t) at time tw + t after a (positive)
temperature shift at tw , with tw = 104, θ1 = 0.5 and θ2 = 0.8 (trap model). Time t ranges from
t = 0 to t = tw . One clearly sees the propagation of a ‘front’ at small energies, associated with
the re-equilibration of the short time scales, before the global drift of the distribution starts again.

increases, the equilibration progresses as a kind of ‘front’ in energy space, as shown in
figure 6. Only at later times does the peak of the distribution move to larger (negative)
energies. It is interesting to realize that this picture is in fact very close to the one emerging
from the coarsening model where short scales re-equilibrate fast and lead to an increase of the
average energy, before larger length scales resume the coarsening process (see figure 2, and
the discussion of section 2).

The conclusion from the ‘domain growth’ interpretation of the Kovacs effect presented
in the previous section is that a quantitative analysis of the Kovacs effect might give one a
unique tool to investigate experimentally the problem of growing length scales or the statistics
of trapping times in glassy systems, a topic of huge current interest [25, 27–32]. However,
as demonstrated above, the quantitative predictions of the trap model are in fact very similar
to that of domain growth. As discussed recently in [33], the physical difference between the
two pictures is not as obvious as it might first seem. In particular, the trap model description
implicitly assumes the existence of an underlying ‘coherence length’ [23]; conversely, domain
growth models may naturally generate a non-trivial distribution of relaxation times [33]. A
possible discrimination might lie in the temperature dependence of the short time and long
time exponents that describe the Kovacs hump. While a temperature dependence is expected in
an activated trap like description, it is less natural for power-law domain growth. On the other
hand, more complicated (logarithmic) growth laws can mimic power laws with a temperature
dependent exponent [34, 12].

4. Summary and conclusions

Although the Kovacs effect has been known for 40 years, its quantitative interpretation has not
been much developed until recently. In view of the fact that this effect is generic and observed
in a variety of different ‘glassy’ systems and models (such as the ones studied in the present
paper), it is important to establish which type of microscopic information one can extract from
the quantitative analysis of the ‘Kovacs hump’. Qualitatively, the Kovacs effect reflects the
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Table 1. Summary of the different results and regimes for the Kovacs hump, in the limit where
T1 → T −

2 . We denote by t1 or tw the time spent at the lowest temperature T1, � and z the
energy and dynamical exponents for domain growth, γ the ratio γ = T1/T2 and θ1,2 the reduced
temperatures θ1,2 = T1,2/Tg .

Domain growth (�eq = ∞) Trap model T1 > Tg Trap model T1 < Tg

Preparation time t1 �(t1, T1)
�−d ∝ T2 − T1 t

1−θ1
1 ln t1 ∝ T2 − T1 tw

Height of the hump �EK ∝ T2 − T1 ∝ T2 − T1 ∝ T2 − T1

Characteristic time τ ∗ �(τ ∗, T2) = �(t1, T1) τ ∗ = t
T1/T2
1 τ ∗ = t

T1/T2
w

Hump time τK τK ∼ (τ ∗)
1

ν+1 � τ ∗ τK ∼ (τ ∗)
1

ν+1 � τ ∗ τK ∼ τ ∗

�E at early time �EK(1 − ��−d ) �EK(1 − t−ν ln t) �EK(t/τ ∗)(1−θ1)/γ

�E at late time �EK(�1/�)
d−� �EK(τ ∗/t)ν −T2 ln(t/t

γ
w)

Exponent ν ν = (d − �)/z ν = θ2 − 1

heterogeneity of the system: fixing the overall (macroscopic) value of the volume or energy
does not prevent the existence of local fluctuations, which keep track of the system history. A
more complete description of the system therefore requires one to deal with full distribution
functions, and not only with averages. In the two models studied in this paper, this distribution
function is that of domain sizes in domain growth models, and that of relaxation times in the
trap model. These models lead to precise, quantitative predictions for the shape of the Kovacs
hump, which are summarized in table 1, and by the following phenomenological equation
that describes the Kovacs hump (inspired from both domain growth and trap models—see
equations (3), (11), (13)):

�E = �EK

[
τ ∗ν

(t + τ ∗)ν
− ϕ

tν

]
. (27)

In domain growth models, the exponent ν is equal to (d − �)/z, where z is the dynamical
exponent relating length and time: � ∼ t1/z. The first term corresponds to the long time
contribution of already grown domains, and the second term to the excess energy created by
the transient nucleation of new domains. A similar interpretation of the two terms can be
given within the trap model, with ν = T/Tg − 1 (for an exponential distribution of barriers).
Note that from equation (27), one sees that the data should re-scale as �EKG

(
t
τ ∗

)
when τ ∗

becomes large. The position of the maximum τK extracted from equation (27) is, in the limit
τ ∗ � 1, given by

τK ≈ (ϕτ ∗)
1

ν+1 � τ ∗ (28)

so that the correct scaling variable is not t/τK , except in the limit ν → 0, where τK and τ ∗

coincide.
We hope that these results will motivate new, systematic experiments. It would in

particular be valuable to test equation (27). It would be very interesting to extract from
a detailed analysis of the Kovacs effect a quantitative determination of the distribution of
relaxation times in glassy systems, and its temperature dependence. This distribution could
then be compared with other direct, dynamical determinations. Another situation worth
investigating experimentally, suggested by the present study, is the out of equilibrium (ageing)
Kovacs effect, where both temperatures are kept well below the glass temperature Tg .

Finally, from a theoretical point of view, it would be worth studying the predictions of the
mean field (p-spin) spin-glass for the shape of the Kovacs hump. As is well known (see, e.g.,
[35]), the dynamical equations for this system are identical to the mode-coupling equations
for structural glasses. Although we expect on general grounds that the results of this model
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should be again quite similar to those obtained in the present study, it would be interesting to
check this assertion in more detail.
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Appendix. Detailed calculation in the trap model

A.1. Probability distribution and Green function

The master equation of the trap model reads

∂PT

∂t
(E, t) = −e−βEPT(E) + ω(t)ρ(E) (29)

with ω(t) = ∫ ∞
0 dE′ e−βE′

PT(E′, t), and β = 1
T

. E is a positive variable, the depth of the
traps, and is actually the opposite of the true energy of the states. This master equation has to
be supplemented by an initial condition

PT(E, t = 0) = P0(E) (30)

where P0(E) is a given (arbitrary) probability distribution. We also take an exponential density
of states, ρ(E) = T −1

g e−E/Tg . Introducing the Laplace transform P̂ T (E, s) with respect to t
defined as

P̂ T(E, s) =
∫ ∞

0
dt e−stPT(E, t) (31)

the master equation becomes

sP̂ T(E, s) − P0(E) = −e−βEP̂ T(E, s) + ω̂(s)ρ(E). (32)

Solving for P̂ T(E, s), one has

P̂ T(E, s) = P0(E)

s + e−βE
+

ω̂(s)ρ(E)

s + e−βE
. (33)

ω̂(s) is determined by multiplying equation (33) by e−βE and integrating over E. The
distribution P̂ T(E, s) is then given by

P̂ T(E, s) = eβE

1 + s eβE
P0(E) +

1

s

eβEρ(E)

1 + s eβE
ϕ̂(s)

[∫ ∞

0
dE

eβEρ(E)

1 + s eβE

]−1

(34)

with ϕ̂(s) defined as

ϕ̂(s) =
∫ ∞

0
dE

P0(E)

1 + s eβE
. (35)

Integrating equation (34) over E allows us to check that P̂ T(E, s) is well normalized, i.e.∫ ∞
0 dEP̂ T(E, s) = 1/s. In order to compute the variation of the energy after a temperature

shift, one has to introduce the Green function GT(E,E0, t) defined as the probability for the
system to have energy E at time tw + t given that the energy was E0 at time tw, if the bath
temperature is T. Note that since the process is Markovian, the Green function depends only
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on the time difference t, and not on tw. The Green function in the Laplace space ĜT(E,E0, s)

is straightforwardly obtained from equation (34) choosing P0(E) = δ(E − E0):

ĜT(E,E0, s) = eβE0

1 + s eβE0
δ(E − E0) +

1

s

1

1 + s eβE0

eβEρ(E)

1 + s eβE

[∫ ∞

0
dE

eβEρ(E)

1 + s eβE

]−1

. (36)

As shown in [20], the energy distribution PT(E, t) takes a scaling form for large times.
Indeed, from equation (34), one has for s → 0:

P̂ T(E, s) = 1

s

eβEρ(E)

1 + s eβE

[∫ ∞

0
dE

eβEρ(E)

1 + s eβE

]−1

= sin πθ

π

β eβE

(1 + s eβE)(s eβE)θ
≡ �̂T(E, s)

(37)

which defines the asymptotic distribution �̂T(E, s). The reduced temperature θ = T/Tg has
also been introduced. Its inverse Laplace transform �T(E, t) satisfies a scaling relation in the
variable ξ = eE/T

T :

�T(E, t) = βξg(ξ). (38)

One finds g(ξ) by inverting the Laplace transform given by equation (37)

g(ξ) = sin πθ

π
(θ)

1

ξ
e−1/ξ

∫ 1/ξ

0
du uθ−1 eu. (39)

So for large times, the Green function is given by

ĜT(E,E0, s) = eβE0

1 + s eβE0
δ(E − E0) +

1

1 + s eβE0
�̂T(E, s). (40)

We now consider the following thermal history: at the initial time, the system is quenched from
T0 > Tg to T1 < Tg; at time tw, it is re-heated to a temperature T2 satisfying T1 < T2 < Tg .
One is interested in the subsequent evolution of the energy, at time tw + t . The probability of
having energy E at time tw + t , given this thermal history, is

P(E, tw, t) =
∫ ∞

0
dE0 GT2(E,E0, t)PT1(E0, tw). (41)

Taking the double Laplace transform with respect to tw and t

P̂ (E, sw, s) =
∫ ∞

0
dE0 ĜT2(E,E0, s)P̂ T1(E0, sw). (42)

Using the asymptotic expressions equations (37) and (40), one can write

P̂ (E, sw, s) = eβ2E

1 + s eβ2E
�̂T1(E, sw) + �̂T2(E, s)

∫ ∞

0
dE0

�̂T1(E0, sw)

1 + s eβ2E
. (43)

A.2. Evolution of the average energy and scaling relation in the ageing regime

Bearing in mind that the energy of a given state is the opposite of the energy barrier E, the
mean energy Ē(t) at time t is defined by

−Ē(t) =
∫ ∞

0
dE EPT(E, t). (44)

Taking into account the thermal history introduced in the preceding section, we define the
energy variation between time tw and tw + t :

�E(tw, t) ≡ Ē(tw + t) − Ē(tw). (45)
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Computing the double Laplace transform yields

−�Ê(sw, s) =
∫ ∞

0
dE

∫ ∞

0
dE0(E − E0)ĜT2(E,E0, s)P̂ T1(E0, sw). (46)

Expanding this equation, one finds for swτ0 and sτ0 � 1

−�Ê(sw, s) =
∫ ∞

0
dE E�̂T2(E, s)

∫ ∞

0
dE0

�̂T1(E0, sw)

1 + s eβ2E0
− 1

s

∫ ∞

0
dE0 E0

�̂T1(E0, sw)

1 + s eβ2E0

(47)

= Î (s)Ĵ (sw, s) − 1

s
K̂(sw, s) (48)

where Î (s), Ĵ (sw, s) and K̂(sw, s) denote, respectively, the three integrals appearing in
equation (47). Making the change of variable τ = eβ2E in Î and τ = eβ1E0 in Ĵ and K̂ ,
one has

Î (s) = sin πθ2

π

∫ ∞

1
dτ

T2 ln τ

(1 + sτ )(sτ )θ2
(49)

Ĵ (sw, s) = sin πθ1

π

∫ ∞

1

dτ

(1 + sτ γ )(1 + swτ)(swτ)θ1
(50)

K̂(sw, s) = sin πθ1

π

∫ ∞

1

dτ T1 ln τ

(1 + sτ γ )(1 + swτ)(swτ)θ1
(51)

with γ = T1/T2; Î (s) can be computed using the identity ln τ = ∂τα/∂α|α=0; one finds

Î (s) = T2

s
(π cot πθ2 − ln s). (52)

Let us show that �Ê(sw, s) satisfies a scaling relation. Note first that for s → 0, Ĵ (sw, s) is
of the form

Ĵ (sw, s) = 1

s1/γ

∫ ∞

0
du

f (swu/s1/γ )

1 + uγ
(53)

where f (x) = (sin πθ1)/[πxθ1(1 + x)], and u = s1/γ τ . In the same way, K̂(sw, s) reads

K̂(sw, s) = −T2 ln sĴ (sw, s) +
T1

s1/γ

∫ ∞

0
du

f (swu/s1/γ )

1 + uγ
ln u. (54)

Coming back to �Ê(sw, s), one has from equation (48) that terms in ln s cancel, and one gets

−�Ê(sw, s) = 1

s1+1/γ

[
πT2 cot πθ2

∫ ∞

0
du

f (swu/s1/γ )

1 + uγ
− T1

∫ ∞

0
du

f (swu/s1/γ )

1 + uγ
ln u

]

= 1

s1+1/γ
ϕ

( sw

s1/γ

)
(55)

which implies a simple scaling form �E(tw, t) = ψ
(
t
/
t
γ
w

)
. This is easily shown by computing

the Laplace transform of this scaling form

Ltwtψ

(
t

t
γ
w

)
=

∫ ∞

0
dt

∫ ∞

0
dtw e−st e−swtwψ

(
t

t
γ
w

)
. (56)

Let us make the following changes of variable: t = xt
γ
w (at fixed tw), and then tw = v/(sx)1/γ

(at fixed x). One finally gets

Ltwtψ

(
t

t
γ
w

)
= 1

s1+1/γ

∫ ∞

0

dx

x1+1/γ
ψ(x)

∫ ∞

0
dv vγ exp

(
− sw

s1/γ

v

x1/γ
− vγ

)
= 1

s1+1/γ
ϕ

( sw

s1/γ

)
(57)

which indeed gives back the expected scaling form in Laplace space.
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A.3. Short time behaviour

In this section, we shall focus on the short time behaviour of �E(tw, t), characterized by
t � t

γ
w , or equivalently s � s

γ
w. Note, however, that we consider only times that are large

compared to the microscopic time scale: t, tw � τ0 = 1 (s, sw � 1). From equation (55),
one sees that two integrals have to be computed

A(λ) = sin πθ1

π

∫ ∞

0

du

(1 + uγ )(1 + λu)(λu)θ1
(58)

B(λ) = sin πθ1

π

∫ ∞

0

ln u du

(1 + uγ )(1 + λu)(λu)θ1
(59)

where λ stands for the ratio sw/s1/γ . In the case λ � 1, these integrals reduce to

A(λ) = sin πθ1

πλθ1

∫ ∞

0

du

(1 + uγ )uθ1
B(λ) = sin πθ1

πλθ1

∫ ∞

0

ln u du

(1 + uγ )uθ1
(60)

on condition that θ1 + γ > 1. The opposite case, θ1 + γ < 1, will be considered later on. The
integrals A(λ) and B(λ) are readily calculated using the following identities:∫ ∞

0

dv

vµ(1 + v)
= π

sin πµ

∫ ∞

0

ln v dv

vµ(1 + v)
= π2 cos πµ

sin2 πµ
. (61)

Altogether, one finds for �Ê(sw, s)

−�Ê(sw, s) � T2π sin πθ1

γ sin π
γ
(1 − θ1)

[
cot

π

γ
(1 − θ1) + cot πθ2

]
1

s1+1/γ

(
s1/γ

sw

)θ1

. (62)

The short time behaviour of �E(tw, t) is obtained by the inverse Laplace transform, in the
case θ1 + γ > 1

�E(tw, t) � K>

(
t

t
γ
w

)(1−θ1)/γ

t � tγw (63)

where the coefficient K> is given by

K> = −
T2π sin πθ1

[
cot π

γ
(1 − θ1) + cot πθ2

]
γ sin

[
π
γ
(1 − θ1)

]

(θ1)


( 1+γ−θ1

θ1

) . (64)

Note that in spite of the minus sign in the rhs of equation (63), �E(tw, t) is indeed positive
at short times for θ2 > θ1, showing that the energy has to increase first before reaching
lower values. However, this coefficient vanishes for θ2 = θ1 (i.e. no singularity occurs if the
temperature is kept constant), and becomes negative for θ2 < θ1.

In the opposite case, θ1 + γ < 1, another approximation has to be used. Making the
change of variable v = λu in A(λ) and B(λ)—see equations (58), (59)—one finds

A(λ) = sin πθ1

πλ

∫ ∞

0

dv

[1 + (v/λ)γ ](1 + v)vθ1
(65)

B(λ) = sin πθ1

πλ

∫ ∞

0
dv

ln v − ln λ

[1 + (v/λ)γ ](1 + v)vθ1
. (66)

In the small λ limit, (v/λ)γ � 1, so that A(λ) and B(λ) reduce to

A(λ) � sin πθ1

πλ1−γ

∫ ∞

0

dv

vγ +θ1(1 + v)
B(λ) � sin πθ1

πλ1−γ

∫ ∞

0
dv

ln v − ln λ

vγ +θ1(1 + v)
(67)
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which are indeed convergent since γ + θ1 < 1. One then finds for �Ê(sw, s)

−�Ê(sw, s) � sin πθ1

sin π(γ + θ1)

×
[
πT2 cot πθ2 − πT1 cot π(γ + θ1) + T1 ln

sw

s1/γ

] 1

s1+1/γ

(
s1/γ

sw

)1−γ

. (68)

The inverse Laplace transform yields

�E(tw, t) � K<

(
C − ln

t

t
γ
w

)
t

t
γ
w

t � tγw (69)

where K< and C are given by

K< = T2 sin πθ1


(1 − γ ) sin π(γ + θ1)
(70)

C = γ

′(1 − γ )


(1 − γ )
− 
′(2) + π cot πθ2 − π cot π(γ + θ1). (71)

A.4. Long time behaviour

One can also study the long time behaviour t � t
γ
w , which happens to be easier to handle than

the short time one. Coming back to the starting equation (47), the limit s � s
γ
w simplifies the

equation a lot, and one gets

−�Ê(sw, s) = T2

s
[π cot πθ2 − ln s]

∫ ∞

0
dE0 �̂t1(E0, sw)︸ ︷︷ ︸

1/sw

−1

s

∫ ∞

0
dE0 E0�̂T1(E0, sw). (72)

The second term is nothing but Lt tw Ē(tw), which also appears on the left-hand side of the
equation, due to the definition of �Ê(sw, s). In other words, the long time behaviour of
Ē(tw + t) appears to be the same as if the system had been quenched from high temperature
to T2 at time tw. One finally finds

�E(tw, t) = Ē(tw + t) − Ē(tw) (73)

Ē(tw + t) = −L−1
t

T2

s
(π cot πθ2 − ln s) (74)

= T2[
′(1) − π cot πθ2] − T2 ln t (75)

showing that Ē(tw + t) is indeed independent of tw and of T1 for times t � t
γ
w . This result can

also be found directly without using this particular thermal procedure: if one computes the
probability distribution P(E, t) for large times t, starting from an arbitrary initial distribution
P0(E), it appears that the asymptotic (large t) distribution does not depend on P0(E):

Ē(tw + t, tw) = Ēlate(t) (76)

where Ēlate(t) is the average energy at a large time t after a quench from high temperature.
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[35] Bouchaud J-P, Cugliandolo L, Kurchan J and Mézard M 1998 Spin-Glasses and Random Fields ed A P Young

(Singapore: World Scientific) and references therein


